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Abstract

Cancerous tissue transformation developing usually over years or even decades of life is a highly complex process
involving strong stressors damaging DNA, chronic inflammation, comprehensive interaction between relevant
molecular pathways, and cellular cross-talk within the neighboring tissues. Only the minor part of all cancer cases
are caused by inborn predisposition; the absolute majority carries a sporadic character based on modifiable risk factors
which play a central role in cancer prevention. Amongst most promising candidates for dietary supplements are bioactive
phytochemicals demonstrating strong anticancer effects. Abundant evidence has been collected for beneficial effects of
flavonoids, carotenoids, phenolic acids, and organosulfur compounds affecting a number of cancer-related pathways.
Phytochemicals may positively affect processes of cell signaling, cell cycle regulation, oxidative stress response,
and inflammation. They can modulate non-coding RNAs, upregulate tumor suppressive miRNAs, and downregulate
oncogenic miRNAs that synergically inhibits cancer cell growth and cancer stem cell self-renewal. Potential clinical
utility of the phytochemicals is discussed providing examples for chemoprevention against and therapy for human
breast cancer. Expert recommendations are provided in the context of preventive medicine.
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Background
Official statistics provided by the World Health
Organization demonstrates annually registered over 14
million new cancer cases, over eight million cancer-related
deaths, and 32.6 million people living with cancer in 2012
worldwide [1]. Cancer is an umbrella term for altogether
over 100 various types of the disease, which in the early
twenty-first century became the acknowledged leading
cause of the deaths worldwide; contextually, breast cancer
plays a major role with around two million new cases and
a half of million pathology-related deaths registered annu-
ally worldwide [2]. Both non-modifiable (such as genetic
ones) and modifiable risk factors contribute to the mani-
festation of cancerous lesions. Thereby, modifiable risk
factors are clearly preventable such as environmental toxic

and stress factors, unhealthy lifestyle including dietary
habits, amongst others, which synergistically promote car-
cinogenesis and clinical onset of malignancies [3–5]. Can-
cerous tissue transformation developing usually over years
or even decades of life is a highly complex process involv-
ing strong stressors damaging DNA, chronic inflamma-
tion, comprehensive interaction between relevant
molecular pathways, and cellular cross-talk within the
neighboring tissues [6]. Only 5 to 10 % of all types of can-
cer are basically caused by inborn cancer predisposition
such as the so-called familial breast cancer subtype known
to be related to the BRCA1 and BRCA2 mutations. In
contrast, the absolute majority of all cancer types carries a
sporadic character based on modifiable risk factors [7].
The acquired DNA damage is commonly induced by
strong stressors such as oxidizing agents, which can be
present in food, air, and water, or they can originate from
shifted metabolic pathways overproducing reactive oxygen
species, e.g., in case of mitochondrial dysfunction and/or
dysregulation of detoxification pathways [7, 8].
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Consequently, for an efficient anticancer protection, it is
crucial to maintain a stable balance between reactive oxy-
gen species released and adequate response by detoxifica-
tion pathways, production of oxidants vs antioxidants, in
order to protect the sustainable molecular makeup: intact
chromosomal and mitochondrial DNA, active transcrip-
tome, and proteome pools [2, 7, 8]. Therefore, modifiable
risk factors play a central role in cancer prevention. Con-
textually, it has been estimated that almost one-third part
of all cancers could be avoided through appropriate diet-
ary habits and supplements [9, 10]. Amongst most prom-
ising candidates for dietary supplements are bioactive
phytochemicals demonstrating strong anticancer effects
[11]. Their regular daily consumption may reduce a risk of
several types of cancer: lung, colon, breast, cervix,
esophagus, oral, cavity, stomach, bladder, pancreas,
and ovary cancer [12]. However, the exact targeting
mechanisms and responsible bio-ingredients are not
yet fully understood [11].
Consequently, a lot of efforts have been made to explore

the protective effects of a broad spectrum of plant-derived
substances [13–17]. Abundant evidence has been col-
lected for beneficial effects of flavonoids, carotenoids,
phenolic acids, and organosulfur compounds affecting a
number of cancer-related pathways and can slow down
the carcinogenic process by suppressing survival and pro-
liferation of tumor cells as well as diminish invasiveness
and angiogenesis of tumors. Some of them can stimulate
detoxifying carcinogens and eliminating them from the
body [4, 18]. Further, phytochemicals may positively affect
processes of cell signaling, cell cycle regulation, oxidative
stress response, and inflammation [19]. Finally, they can
modulate non-coding RNAs, upregulate tumor suppres-
sive miRNAs, and downregulate oncogenic miRNAs that
synergically inhibits cancer cell growth and cancer stem
cell self-renewal [20, 21]. However, the biological activity
of phytochemicals strongly depends on the dietary com-
ponents which could either support or diminish the
overall anticancer effects of the supplement [7, 22]. The
objective of the present article is to update the knowledge
in the area and to overview bioactive plant-derived sub-
stances, their anticancer-related biochemical properties,
and mechanisms of the relevant processes. Potential clin-
ical utility of the phytochemicals is discussed providing ex-
amples for chemoprevention against and therapy for the
human breast cancer since the large scale epidemic as a
characteristic for the early twenty-first century and an
urgent need for innovative predictive, preventive, and
personalized strategies have been recognized for this
cancer type [2].

Source of data
Data from the biomedical English language literature
were reviewed in PubMed. Relevant studies were

retrieved using the following keywords or MeSH (medical
subject heading): “phytochemicals” or “plant-based func-
tional foods” or “isolated plant compounds” or “fruits” or
“vegetables” or “herbs” or “spices” and “antitumour activ-
ity” or “breast cancer” or “chemoprevention” or “therapy”.
The focus was primarily on the most recent scientific
publications.

Phytochemicals–their definition and classification
The term “phytochemicals” refers to the bioactive
non-nutrient compounds present in the plant-based diet.
Numerous lines of evidence indicate that different phy-
tochemicals in the synergy with a range of nutrients, vi-
tamins, minerals, and fiber present in plant-derived
foods, possess disease-preventive properties. It has been
shown that phytochemicals possess anticarcinogenic and
antimutagenic properties, and so, they can play an im-
portant role in the lowering of the various types of neo-
plasia [7, 18, 22–24]. This effect of phytochemicals can
be expected if they are an integral component of regular
human diet [25–28]. More than 5000 individual phyto-
chemicals have been identified in plant-derived foods,
such as fruits, vegetables, and grains. It is estimated that
a large percentage of phytochemicals still remain un-
known [11, 22]. Phytochemicals can be categorized de-
pending on their chemical structure, botanical origin,
biological properties, etc. Presently, there are several
available specific databases on dietary phytochemicals
and their health-promoting effects, including databases
of agents ranked by their efficacy in chemopreventive
preclinical studies [29]. Phytochemicals can be classified
according to their chemical structure as phenolics, carot-
enoids, alkaloids, nitrogen-containing compounds, and
organosulfur compounds [7, 22]. The most studied
groups of phytochemicals are the carotenoids, phenolics,
and organosulfur compounds.
Carotenoids are widely spread in foods. They are

lipid-soluble compounds and provide color [30], and
there are more than 750 structurally different caroten-
oids [31, 32]. Carotenoids, together with chlorophylls,
have important roles in photosynthesis and photoprotec-
tion in plant tissues of phototrophic organisms [22, 31].
Carotenoids are able to quench singlet oxygen as well as
to inactivate reactive oxygen species formed from expos-
ure to light and air [33]. This benefit is also associated
with its antioxidant activity in human health [22].
Carotenoids are generally categorized as follows–(a) vita-
min A precursors that do not pigment, (b) pigments
with partial vitamin A activity, (c) non-vitamin A precur-
sors that do not pigment or pigment poorly, and (d)
non-vitamin A precursors that pigment [30].
Phenolics are referred to as the secondary metabolites

in plants [34]. In planta, they have various essential
functions in the reproduction and growth [35].
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Moreover, they act as defense mechanisms against patho-
gens, parasites, and predators; as attractants for pollina-
tors and seed-dispersing animals; as allelopathic agents,
UV protectants, and signal molecules in the formation of
nitrogen-fixing root nodules; and as a contributor to the
color of plants [22, 34]. The protective attributes of phe-
nolics are due to the alteration of numerous cell signaling
pathways involved in carcinogenesis such as cell cycle
[36], apoptosis [37], or angiogenesis [38]. Phenolic
compounds are generally classified as phenolic acids, fla-
vonoids, stilbenes, coumarins, and tannins. Phenolic acids
can be subdivided into two major groups––hydroxyben-
zoic acid and hydroxycinnamic acid derivatives, and repre-
sent approximately 1/3 of the phenolics in diet. Flavonoids
are a diverse group of phenolic compounds that have been
identified in plant-derived foods. They are classified as fla-
vonols, flavones, flavanols, flavanones, anthocyanidins,
and isoflavonoids and represent the remaining 2/3 of the
phenolics in diet [7, 22].
Organosulfur compounds represent an important class

of bioactive plant-derived substances with a wide range of
purported health benefits. Based on several epidemio-
logical and clinical trials, these compounds have shown to
have anticancer activity through diverse action
mechanisms [39–41]. Consuming organosulfur rich
plant-derived foods, such as cruciferous vegetables, can be
beneficial as they are able to protect these biomolecules
from oxidative damage by hypochlorite [42]. Their pro-
tective effects against carcinogenesis were shown also in

other studies [43, 44]. Glucosinolates are the important
group of organosulfur compounds that act as natural pes-
ticides and have shown antimicrobial and antifungal activ-
ities. In vitro studies have showed their antiproliferative
effects on various tumor cell lines and that they are signifi-
cantly involved in the metabolism of estrogen [45–47].

Antitumor activities of bioactive plant-derived
phytochemicals––mechanism of their action
Given the great structural diversity of bioactive
plant-derived compounds, it is very difficult to define
structure-activity relationships to deduce their underlying
molecular mechanisms [18]. Therefore, a better approach
is to analyze their effects on cancer-associated signaling
pathways and, in this manner, define mechanisms of their
action in the process of carcinogenesis. Recent results of
many in vitro and in vivo studies confirming the antitu-
mor activities of plant-derived substances clearly suggest
that further research on the benefits of wide variety of
phytochemicals present in whole plant-derived foods on
organism is warranted (Fig. 1).

Impact on inflammation
There is clear evidence that the immune system and in-
flammation play a critical role in the process of carcino-
genesis and that inflammatory microenvironment is an
essential component of all tumors [48]. Inflammatory re-
sponses are involved in the initiation and promotion of
cancer, malignant transformation of cells, or in invasion

Fig. 1 Bioactive plant-derived substances and their mechanism of action in the process of mammary carcinogenesis
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and metastasis of cancer cells [6, 49]. Furthermore, they
may affect immune surveillance and responses to antican-
cer therapy [6]. The immune system can eliminate prema-
lignant and transformed cells. However, cancer cells can
bypass the immune system through the growth of resist-
ant or immunogenic clones [50]. Various immune cells
are frequently found accummulated in tumors relative to
the surrounding tissue. These immune cells infiltrate
tumors and communicate with tumor cells [51, 52]. The
important link between inflammation and carcinogenesis
is the pro-inflammatory transcription factor, NF-κB [53].
Moreover, the inflammatory mediators such as
pro-inflammatory cytokines stimulate also the survival
and proliferation of premalignant cells and activate onco-
genic transcription factors [5, 50, 54, 55]. Aharoni et al.
[56] investigated the effect of polyphenols from pom-
egranate juice on macrophage inflammatory phenotype in

vitro. In this study, polyphenols from pomegranate juice
attenuated macrophage response to M1 pro-inflammatory
activation in J774.A1 macrophage-like cell line in a
dose-dependent manner. Dietary carotenoids (β-cryptox-
anthin, astaxanthin) have the potential to affect the
macrophage polarization as well [57]. On the other hand,
oncogenes can initiate the inflammatory response and
suppress antitumor immune response [58].
Many plant-derived compounds have been found to

play an important role in reducing of inflammation in
breast cancer [59–65]. For example, perillyl alcohol
showed impact on reduction of NF-κB DNA-binding ac-
tivity and target gene induction in ER-negative
mammary cells in vitro [66] (Fig. 2a). Yoon and Liu [67]
showed that curcumin (at doses of 10–20 μM) and apple
extracts (at dose of 5 mg/mL) significantly blocked the
TNF-α-induced NF-κB activation in MCF-7 cells by

Fig. 2 Phytochemicals reduce inflammation in breast cancer––evidence of experimental studies. For more details see the text––the section
“Impact on inflammation”
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inhibiting the proteasomal activities (Fig. 2b). Resveratrol
used in in vivo testing reduced expression of COX-2 and
MMP-9, accompanied by reduced NF-κB activation in
rat breast cancer tumors [68] (Fig. 2c). In other study,
Subbaramaiah et al. [69] showed that the mixture of sev-
eral dietary polyphenols from Zyflamend®, including res-
veratrol, EGCG, and curcumin, suppressed levels of
pro-inflammatory mediators (TNF-α, IL-1β, COX-2,
phospho-Akt, phospho-p65, NF-κB-binding activity) in
the mouse model of obesity-associated mammary gland
inflammation (Fig. 2d).

Induction of apoptosis
Apoptosis is an organized process (programmed cell
death) that is continually occurring in cells [70].
Inappropriate apoptosis is a characteristic for many
types of cancer. Cancer cells tend to not undergo apop-
tosis, allowing tumors to grow in a rapid and uncon-
trolled manner. The tumor suppressor gene TP53 plays
one of the most important roles in this process. Its mu-
tation leads to functional inactivation of the p53 protein,
and thus, the cell loses the important DNA damage sen-
sor capability that normally trigger the apoptotic cas-
cade. Some other important players in apoptosis are the
cysteine proteases known as the caspases and the mem-
bers of the Bcl-2 family of proteins including
pro-apoptotic Bax and antiapoptotic Bcl-2.
Many phytochemicals or plant foods have been shown

to induce apoptosis of malignant cells through different
mechanisms of action. Several in vitro studies showed
that the isolated phytochemicals were able to effectively
trigger the activation of effector caspases in the process
of apoptosis, such as caspase-3 and caspase-7, or the
others, and increased Bax/Bcl-2 pro-apoptotic ratio [71–
84]. There are several in vitro studies confirming these
effects of phytochemicals in breast carcinoma cell lines.
Campbell et al. [85] tested the effect of acetoxychavicol
acetate on breast carcinoma-derived MCF-7 and
MDA-MB-231 cell lines. Their results showed decrease
of tumor cell viability through a caspase-3-dependent in-
crease in apoptosis. In other study, sanguinarine induced
apoptosis in MDA-MB-231 human breast carcinoma
cells through several mechanisms, including activation
of caspase-3 and caspase-9 [78]. A study by Pledgie et al.
[86] showed that sulforaphane induced cell type-specific
apoptosis in various human breast cancer cell lines. In
other in vitro study, the natural dietary substance pter-
ostilbene induced apoptosis of MCF-7 and
MDA-MB-231 breast cancer cells through Bax activation
[87]. Khorsandi et al. [88] demonstrated that phenolic
compound quercetin is able to induce apoptosis and
necroptosis in MCF-7 cells (Fig. 3). There are a little in
vivo studies focusing on evaluation of antitumor effects
of both single phytochemicals or their mixture in the

mammary carcinogenesis. Chew et al. [89] demonstrated
that dietary lutein inhibits growth of mammary tumors
in female BALB/c mice by regulating apoptosis. Re-
cently, our working group led by Dr. Kubatka has real-
ized extensive oncological research with several whole
plant-derived foods in mammary carcinoma model
(Table 1). The main aim of this research is the evalu-
ation of chemopreventive effects of long-term adminis-
tration of whole plant-derived foods in a well-established
model of N-methyl-N-nitrosourea (NMU)-induced
mammary carcinogenesis in female rats. In all animal ex-
periments, the chemoprevention began 7 days before
NMU administration and lasted until the end of the ex-
periment, about 13 weeks after carcinogen administration.
These studies demonstrated pro-apoptotic effects of
Chlorella pyrenoidosa (CHLO), young barley (Hordeum
vulgare L., phylloma, BAR), fruit peel polyphenols of Fla-
vin7® (FLA), oregano (Origanum vulgare L., haulm, ORE),
and clove buds (Syzygium aromaticum L., CLO). Chlorella
is a rich source of various phytochemicals, especially ca-
rotenoids and polyphenols. CHLO at a dose of 30 g/kg of
chow significantly increased caspase-7 expression and
Bax/Bcl-2 ratio in mammary carcinoma cells in rats [13].
Young barley represents an important source of flavo-
noids. Immunohistochemical analysis of tumor cells in
both treated groups (3 and 30 g/kg of chow) showed sig-
nificant increase in caspase-3 protein expression [14]. In
the next experiment, fruit peel polyphenols of Flavin7®
showed significant increase in caspase-3 expression and
Bax/Bcl-2 pro-apoptotic ratio in rat mammary tumor cells
(30 g/kg of chow) [15]. And in the most recent experi-
ments, lyophilized oregano haulm (3 and 30 g/kg of chow)
or cloves (10 g/kg of chow), respectively, rich in phenolic
compounds and terpenoids, similarly increased caspase-3
expression and Bax/Bcl-2 ratio in rat tumor cells [16, 17]
(Fig. 3). These findings confirmed the results of parallel in
vitro studies in which all five natural substances were able
to induce the apoptosis in MCF-7 tumor cells. In these ex-
periments, the annexin V/PI staining, caspase-7 activation,
and parallel non-caspase-dependent apoptotic pathway
analyses were performed to confirm their involvement in
cellular changes leading to cell death of breast cancer cell
line (MCF-7). These results showed that these five natural
substances induce apoptosis in MCF-7 cells through sig-
nificant deactivation in antiapoptotic activity of Bcl-2 and
activation of mitochondrial apoptosis pathway. Moreover,
our results confirmed that the decrease in cell viability of
MCF-7 cells by all tested substances was associated with
an increase in the fraction of cells with sub-G0/G1 DNA
content which is considered a marker of apoptotic cell
death [13–16]. It is known that overproduction of ROS
can promote apoptosis. In our in vitro study, chlorella sig-
nificantly stimulated ROS generation in MCF-7 cells. To
confirm the role of ROS in chlorella-induced cell death,
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MCF-7 cells were pretreated with antioxidant Trolox and
compared with chlorella treatment only. Results indicate
that ROS can be crucial in the induction of
chlorella-induced apoptosis. Trolox pretreatment caused a
reduction in ROS levels and significantly rescued
chlorella-induced MCF-7 cytotoxicity [13].

Inhibition of proliferation
One of the major characteristics of carcinogenesis is a
dysregulated and aggressive proliferation and rapid
growth of the tumor cells. The case of normal healthy
cells is their proliferation finely regulated through a bal-
ance between the growth and antigrowth signals. In this

regard, apoptosis is a vital component of various pro-
cesses including normal cell turnover, proper develop-
ment, and functioning of many tissue/organ systems.
However, cancer cells develop the ability to grow uncon-
trollably, and they generate their own growth signals and
become insensitive to antigrowth signals [53, 90] (Fig. 4).
The important factors that regulate the cell through its
natural progression are the cyclins, cyclin-dependent ki-
nases, COX-2, and c-Myc. In case of cancer, they can be
upregulated causing uncontrollable cell proliferation.
In addition to pro-apoptotic effects, phytochemicals

such as carotenoids, phenolic, and organosulfur com-
pounds have demonstrated also antiproliferative effects

Fig. 3 Isolated phytochemicals and/or mixture of phytochemicals contained in functional foods induce apoptosis of breast cancer cells through
different mechanisms of action––evidence of experimental studies. For more details, see the text––the section “Induction of apoptosis”
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in several in vitro studies [91–98]. They cause cell cycle
arrest at various stages of the cell cycle, many of them
just by affecting cyclins. Sesamin showed the ability to
downregulate cyclin D1 expression in a wide variety of
tumors, including human breast cancer in in vitro test-
ing [99]. Beta-sitosterol and crocin showed inhibition of
growth in human breast cancer cell lines [100, 101]. Ge-
nistein induced G2/M cell cycle arrest in MCF-7 breast
cancer cell line [102]. Antiproliferative activity of an-
other phytochemicals on breast cancer cell lines was
evaluated also in further in vitro studies [103, 104]. In
vitro results are commonly confronted with in vivo stud-
ies. Some animal studies showed apparent antiprolifera-
tive effects of many phytochemicals by decreasing of
Ki67 expression in cancer cells [13–16, 91, 105–108].
Ki67 is considered as a good tumor marker that is
present in the growing and dividing cells [109]. In our in
vivo breast cancer rat model, we observed a significant
decrease in the expression of Ki67 in rat mammary car-
cinoma cells after young barley, fruit peel polyphenols,
oregano, and clove treatment. Our parallel in vitro

studies confirm these results and showed the significant
antiproliferative effects of these compounds in MCF-7
cell line. Chlorella, young barley, fruit peel polyphenols
from Flavin7, cloves, and oregano significantly decreased
metabolic activity and viability of MCF-7 breast cancer
cells in MTT assay and DNA synthesis measured by
BrdU proliferation assay. Moreover, these substances
prevented cell cycle progression by significant decrease
in G0/G1 and S populations’ enrichment [13–16].

Impact on metastasis and angiogenesis
Cancer cell invasion and metastasis are processes which
involve growth, adhesion, and migration of cancer cells,
and also proteolytic degradation of tissue barriers––extra-
cellular matrix and basement membrane [53]. Some
matrix metalloproteinases (MMP-2, MMP-9) and intercel-
lular adhesion molecule (ICAM-1) participating in the

Table 1 Evaluation of anti-tumor effects of plant-derived foods/
nutraceuticals in rat mammary carcinoma model

Tumor
frequency

Tumor
incidence (%)

Tumor
latency (days)

References

Chlorella pyrenoidosa

CONT 2.88 79.20 70.74 [13]

CHLO 0.3 2.00 80.00 74.90

CHLO 3 1.12a 68.00 83.18a

Hordeum vulgare, L. phylloma

CONT 3.12 80.00 87.50 [14]

BAR 0.3 1.96 72.00 88.28

BAR 3 2.72 80.00 77.70

Flavin7®

CONT 3.40 100.00 66.64 [15]

FLA 0.3 2.44 92.00 70.91

FLA 3 1.44b 76.00c 74.42

Origanum vulgare L., haulm

CONT 2.96 72.00 65.33 [16]

ORE 0.3 1.32a 40.00d 75.60

ORE 3 2.36 72.00 77.78d

Syzygium aromaticum L., glove buds

CONT 4.20 84.00 69.33 [17]

CLO 0.1 2.20c 80.00 75.25

CLO 1 1.75e 87.50 76.67

Footnote: CONT control group, CHLO chlorella group, BAR young barley group,
FLA flavin group (fruit peel polyphenol extract), ORE oregano group, and CLO clove
buds group. Foods/nutraceuticals were administered dietary in a concentrations of
0.3 and 3 % (3, resp. 30 g/kg of the diet), with exception of cloves with dosing of
0.1 and 1 %
Significantly different, ap < 0.02, bp <0 .001, cp < 0.05, dp < 0.03, ep < 0.01 vs CONT

Fig. 4 Deregulated and aggressive proliferation of cancer cells is
one of the major features of carcinogenesis. For more details, see
the text––the section “Inhibition of proliferation”
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degradation of these barriers [110–113]. The important
role in the process of angiogenesis and vasculogenesis
plays also the receptors for vascular endothelial growth
factor. Together with other growth factors such as
platelet-derived growth factor, fibroblast growth factors,
epidermal growth factor, and others are potentially im-
portant targets in antiangiogenic therapy for cancer. It
seems that the VEGFR-2 mediates almost all of the known
cellular responses to VEGF [114].
Recent reports from breast cancer studies have

demonstrated antimetastatic and antiangiogenic effects
of various phytochemicals. The in vitro study
performed by Kim et al. [115] showed that two
chalcones–2-hydroxychalcone and xanthohumol, inhib-
ited the growth and invasiveness of triple negative
breast cancer cell line MDA-MB-231. These chalcones
were able to decrease the secreted level of MMP-9 in
cancer cells. Way and Lin [116] showed that apigenin
can play an important role in inhibition of adhesion
and motility of breast cancer cells. It showed the ability
to mediate the HER2-HER3-PI3K-AKT pathway in this
experiment. Further, diindolylmethane decreased the
CXCR4 and CXCL12 levels, in MCF-7 and MDA-MB-
231 breast cancer cell lines. The chemokine receptor
CXCR4 and its ligand CXCL12 are desired for meta-
static activity of mammary cells [117]. In another study,
flavopiridol inhibited the secretion of MMP-2 and
MMP-9 in mammary cancer cells [118]. The ability to
suppress invasive behavior of breast cancer cells in
vitro was also by sanguinarine, ganoderic acids, genis-
tein, [6]-gingerol, silibinin, phytic acid, and
indole-3-carbinol [119–124, 47]. In some experimental
studies of breast cancer, flavonoids showed the ability
to inhibit the growth of mammary tumor cells by sup-
pressing of the VEGF/VEGFR-2 signaling pathways.
Mojžiš et al. [125] used the Flavin7 in in vitro testing
and showed its antiangiogenic activity in HUVEC-lines.
Flavin7 inhibited endothelial cell migration and capil-
lary tube formation that indicates its potential antian-
giogenic properties and also inhibited the activity of
matrix metalloproteinases (MMP-9 and MMP-2) which
play an important role in tumor cell invasion. In our in
vivo experiment, the mixture of fruit peel polyphenols
from Flavin7 significantly suppressed the VEGFR-2 ex-
pression in the treated groups of animals compared to
the control [15]. Similarly, oregano (3 and 30 g/kg of
chow) decreased the VEGFR-2 expression and cloves
(10 g/kg) decreased the VEGF expression compared to
control rat carcinoma cells in vivo [16, 17]. However,
chlorella, a rich source of various carotenoids and poly-
phenols, showed only moderate antiangiogenic effect in
our animal breast cancer model [13]. Antiangiogenic ef-
fects of phytochemicals were demonstrated in another
experimental studies as well [126, 127].

Impact on breast cancer stem cells
Cancer stem cells (CSCs), sometimes referred to as
“tumor-initiating” or “tumor propagating” cells, are a
small but aggressive population of cells within the tumor
mass which have the ability of self-renewal, differentiation
into tumor cells, invasiveness, and metastatic activity
[128–130]. These rare populations of cells have been de-
finitively identified in cancers of the hematopoietic system,
brain, and breast so far. It is now believed that a cancer
therapy that fails to eliminate CSCs can allow recurrence
of cancer disease. Therefore, anticancer treatment strategy
that specifically target CSCs should be more effective and
have greater potential to reduce the risk of metastasis,
multidrug resistance, or relapse in patients [131]. The sub-
population of putative human breast cancer stem cells
(BCSCs) have a specific cell-surface antigen profile. Their
identification from tumor samples and mammary cancer
cell lines has been based mainly on CD44, CD24, and
ALDH1 phenotypes. BCSCs are generally CD44 positive/
CD24 negative (CD44+/CD24−) and ALDH1 positive
(ALDH1+). Furthermore, BCSCs express higher levels of
oxidative stress-responsive genes, which could be also re-
sponsible for their ability to resist anticancer therapy, than
non-CSCs [128, 129, 132].
Only few in vitro or in vivo studies have evaluated the

effects of plant-derived compounds (isolated or mixture)
on BCSCs. Pterostilbene and 6-shogaol decreased the ex-
pression of CD44 in BCSCs in vitro. Moreover, these com-
pounds promoted β-catenin phosphorylation through the
inhibition of hedgehog/Akt/GSK3β signaling, and this way
decreased the protein expression of downstream c-Myc
and cyclin D1 and reduced BCSCs [133]. Ouhtit et al.
[134] showed that a combination of six well-established
pro-apoptotic phytochemicals (curcumin, genistein,
indol-3-carbinol, c-phycocyanin, resveratrol, and quer-
cetin) downregulated the expression of several oncostatic
markers, including CD44 in MCF-7 and MDA-MB-231
breast cancer cell lines. Anti-BCSC action of curcumin
(alone or in combination with piperine) was also analyzed
in some others in vitro studies in breast cancer cell lines
[135–137]. Reports by Li et al. [138] demonstrated that
sulforaphane eliminated BCSCs in vitro and in vivo as
well. This compound decreased ALDH1-positive cells in
human breast cancer cell line and reduced the number
and size of primary mammospheres. It eliminated also
BCSCs abrogating tumor growth in mouse model. More-
over, researchers showed that sulforaphane downregulated
the Wnt/β-catenin self-renewal pathway. In another study,
Kubatka et al. [16] confirmed the inhibitory effect of ore-
gano against BCSCs in rat mammary breast cancer model.
The immunoexpression of CSCs markers–CD24, and
EpCAM were significantly decreased in rat mammary
cancer cells after oregano treatment. Using the same rat
model, cloves significantly decreased CD24 and CD44
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markers, however increased ALDH1 expression in mam-
mary carcinoma cells [17]. There is a lack of date confirm-
ing anti-CSC action of phytochemicals to this date;
further preclinical and clinical studies and validation of
cell signaling pathways are needed in this research area.

Modulation of non-coding RNAs
Several experimental studies dealt with modifying the
activity of proteins and non-coding RNAs (ncRNAs) by
plant-derived compounds. These studies have shown
that phytochemicals are involved in modulating the epi-
genetic mechanisms and in shaping the epigenome, and
thus; they could have a great importance in pharmaco-
genomics in the near future. It has been shown that they
participate in promoter DNA methylation, histone modi-
fications, and post-transcriptional regulation of genes
through affecting ncRNAs, especially mircoRNAs and
long non-coding RNAs [139]. There is growing evidence
that ncRNA molecules regulate basic cellular and devel-
opmental processes both at the transcriptional and
translational level under normal and cancer disease con-
ditions [140–143]. MicroRNAs (miRNAs) are the small
endogenous ncRNA molecules, often range from 20 to
22 nucleotides in length. It has been shown that they are
able to regulate the gene expression through binding to
the 3′ or 5′ untranslated region (3′ or 5′ UTR) of the

target mRNA [140, 144]. This miRNA-mRNA inter-
action suppresses the expression of the target gene ei-
ther through mRNA degradation or inhibition of its
translation [145]. In present time, miRNAs in particular
are the potential biomarkers for diagnosis and prognosis
of cancer. Moreover, they can be either the potential tar-
gets for anticancer therapeutic agents or involved as ef-
fectors in the new anticancer therapeutic approaches.
What is important is that one miRNA can participate in
modulation of several different molecular pathways in-
volved in the process of initiation and progression of
cancer and only slight change in its expression can trig-
ger various responses in cancer cells. Recent studies
have provided convincing evidence that dietary phyto-
chemicals are able to influence the expression of several
different miRNAs in positive manner [146]. It means
these miRNAs in turn modulate important cellular pro-
cesses included in tumorigenesis and lead to reducing of
inflammation, cell growth and proliferation, cell inva-
sion, and metastasis. It has been shown that the miRNAs
are capable both to suppress and promote oncogenesis
(Fig. 5). Deregulated miRNA transcription leads to
upregulation of oncogenes and silencing of tumor-sup-
pressor genes in lung, breast, head, neck, and bone can-
cers [147–150]. Moreover, they can promote epithelial–
mesenchymal transition (EMT) [20, 151]. However,
more preclinical and clinical studies are needed to

Fig. 5 Importance of miRNAs and phytochemicals involved in the process of carcinogenesis. For more details, see the text––the section
“Modulation of non-coding RNAs”
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elucidate how natural compounds influence the process
of carcinogenesis by influencing the levels of miRNAs.
Recent reports of several preclinical studies demon-

strated that plant-derived compounds, including curcu-
min, resveratrol, diindollylmethane, epigallocatechin
gallate, and indole-3-carbinol can alter the specific
miRNAs expression, and in this way, they can increase the
sensitivity of cancer cells to conventional anticancer treat-
ment in a variety of cancer diseases [143, 152–156]. In the
case of breast cancer research, resveratrol upregulated
tumor-suppressive miRNAs (such as miR-16, miR-141,
miR-143, and the others) in MDA-MB-231 breast cancer
cell line and showed anticancer effects against BCSCs
[157]. In another study, curcumin generated a miR-15-
and miR-16-mediated downregulation of Bcl-2-induced
apoptosis in MCF-7, Bcap-37, and SKBR-3 breast cancer
cell lines [158]. Rhodes et al. [159] evaluated the antican-
cer activity of glyceollin belonging to the group of soy
phytoalexins. In this in vitro study MDA-MB231 cells
treated by glyceollin demonstrated a significant increase
in the expression of selected miRNAs involved in EMT
(such as miR-22, miR-29b, miR-29c, miR-30d, miR-34a,
and miR-195) and those which act as tumor suppressors
(miR-181c and miR-181d). Moreover, the significant de-
crease in the expression of miRNAs which are able to pro-
mote the process of carcinogenesis (miR-21) and
metastasis (miR-185 and miR-224) was confirmed in this
study. Results of another in vitro study in breast cancer
cells performed by Hargraves et al. [160] suggest that
tumor suppressive microRNA miR-34a, transcriptionally
regulated by p53, is an essential component of the anti-
proliferative activities of some phytochemicals derived
from cruciferous vegetables (I3C) and the sweet worm-
wood plant (artemisinin). The anticancer effects of other
phytochemicals in the context of affecting the levels of
miRNAs were showed in other in vitro studies as well
[161–164]. Despite numerous in vitro studies dealing with
effects of plant-derived compounds on levels of miRNAs
in breast cancer cell lines, there is a lack of in vivo studies
validating these findings. Therefore, well-designed animal
studies are highly desirable and needed in the future.

Epidemiological and clinical breast cancer studies
Several clinical epidemiological studies demonstrated
that long-term and regular (several times a week) con-
sumption of plant-based whole foods is linked with a
risk reduction of breast cancer. Castelló et al. [165] de-
scribed that the Mediterranean diet was related to a
lower risk of breast cancer/overall risk for the top quar-
tile vs the bottom quartile 0.56 (95% CI 0.40–0.79).
Fruits, vegetables, legumes, oily fish, and vegetable oils
significantly reduced the risk of mammary carcinogen-
esis, mainly in a triple-negative breast cancer subtype.
Another Spanish study demonstrated that frequent

consumption of extra-virgin oil within a Mediterranean
diet provides the primary prevention of breast cancer in
high-risk women [166]. Authors described that after a
median follow-up of 4.8 years, 35 incident cases of
breast cancer were identified. They found the rates (per
1000 person-years) of 1.1 for group with the Mediterra-
nean diet plus extra-virgin olive oil, 1.8 for the group
with Mediterranean diet plus nuts, and 2.9 for the con-
trol group. Another, Iranian case-control study included
100 incident breast cancer cases and 175 healthy con-
trols. The results demonstrated that increased energy in-
takes from phytochemical-rich foods may be related to
decrease the risk of breast cancer [167]. Also, blueberries
and peaches demonstrated a reduction in the incidence
of ER− breast cancer in post-menopausal women. The
multivariate relative risk for every 2 servings/week con-
sumption for total berries was 0.82 (95% CI = 0.71–0.96,
p = 0.01), and the relative risk for women who consumed
at least one serving of blueberries a week was 0.69
(95% CI = 0.50–0.95, p = 0.02) compared with
non-consumers. Moreover, the relative risk for con-
suming at least 2 servings of peaches/nectarines per
week was 0.59 (95% CI = 0.37–0.93, p = 0.02) [168].
Most recent systematic review evaluated the
association between dietary patterns and breast cancer
risk. Vegetables were consistently found to be protect-
ive in breast cancer [169]. A population-based
case-control study, including 2135 breast cancer cases
(1070 Hispanics, 493 African Americans, and 572
non-Hispanic Whites) and 2571 controls (1391 Hispanics,
557 African Americans, and 623 non-Hispanic Whites)
assessed the association between high dietary fiber intake
breast cancer risk. Breast cancer risk was reduced with the
consumption of bean fiber (p trend = 0.01), total beans
(p trend = 0.03), or total grains (p trend = 0.05). Inverse as-
sociations were strongest for ER−/PR− breast cancer [170].
Meta-analysis of He et al. [171] indicated a borderline in-
verse association between pre-diagnostic intake of fruit
and overall survival of breast cancer, whereas intake of
vegetables was not associated with survival.
There are also several clinical data about the treatment

efficacy of nutraceuticals against breast cancer. In early
phase clinical trials, the traditional Chinese herb Scutellaria
barbata has shown promising efficacy and safety in patients
with advanced breast cancer [172, 173]. In another clinical
study, ten Chinese herbs (Cervus Nippon Temminck, Ginger
Charcoal, Citri Reticulatae Pericarpium Viride, Phytolaccae
Radix, Licorice, Trichosanthes Kirilowii Maxim, Citri
Reticulatae Folium, Panax Notoginseng, Epimedium Herb,
and Fritillariae Thunbergii Bulbus) were significantly
associated with longer survival time of patients suffering
from metastatic breast cancer [174].
There are limited data describing anticancer effects of

isolated phytochemicals against breast cancer. Chen et
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al. [175] using the meta-analysis of epidemiologic studies
(16 prospective and 26 case-control studies) revealed
that daily dietary folate intake between 153 and 400 μg
demonstrated a significant reduction of breast cancer
risk in comparison with participants < 153 μg of folate
intake. This effect was observed especially in women
with higher alcohol intake. On the other hand, another
meta-analysis of randomized trials summarized that the
treatment with folic acid was not associated with the
total cancer risk reduction in several cancer types in-
cluding breast cancer [176]. In the meta-analysis of Hui
et al. [177] (12 studies enrolling 191.419 participants),
the intake of flavonols, flavones, or flavan-3-ols was
associated with breast cancer reduction in
post-menopausal women. Zhang et al. [178] demon-
strated that epigallocatechin-3-gallate could enhance the
effect of conventional anticancer therapy of breast can-
cer. EGCG intake decreased serum levels of VEGFs,
hepatocyte growth factor, MMP-2, and MMP-9 in pa-
tients after radiotherapy.

Discussion and future perspectives
Chemoprevention by dietary phytochemicals is an ac-
ceptable, cost-effective, and readily applicable approach
to cancer control and management, but there is not suf-
ficient evidence to show that plant-derived foods de-
crease the risk or prognosis of this disease. Several
non-nutritive phytochemicals, either as an isolated agent
or a mixture of agents from plant-derived foods, are be-
ing evaluated in preclinical and intervention trials for
their potential as cancer chemopreventive agents.
Despite the significant advance in our understanding of
multistep process of carcinogenesis, we still know little
about the mechanism of action of most chemopreventive
phytochemicals. Antitumor activities of plant-derived
foods are believed to be from the combination of various
phytochemicals rather than an isolated agent. The com-
plex mixture of phytochemicals with a plethora of bio-
logical activities present in whole plant-derived foods
could have additive or synergistic effects against carcino-
genesis. The isolated pure plant-derived compound ei-
ther loses its bioactivity or may not react the same way
as if the compound is present in whole foods [179].
An important challenge for research today is to iden-

tify the molecules in the cell signaling network that can
be affected by individual phytochemicals for better as-
sessment of their mechanism of action. Another import-
ant issue is the dose of phytochemicals, regarding their
portion size and frequency of intake in humans. The
concentrations of phytochemicals used in in vitro studies
serve exclusively for one purpose, i.e., for testing the sur-
vival of cancer cells and mechanism of action of the sub-
stance; however, these doses are often unachievable in
human body fluids [179, 180]. Most of in vivo studies

are aimed to validate results from in vitro testing, but
similarly, it is often unclear if these observations are
physiologically and clinically relevant [181]. Comparing
both preclinical approaches (in vitro and in vivo), animal
studies could be more helpful in this respect, but another
problem may be that effective dosing of phytochemicals
and/or whole plant-derived foods appears to be specific
among mammal species. Furthermore, pharmacokinetic
properties and bioavailability of phytochemicals can play
one of the key roles in investigating the dietary prevention
of cancer [182]. These statements point to the fact that
the use of chemopreventive compounds for interventional
studies is not simple. Moreover, it is clear that preclinical
oncological research provides data only for the anticancer
potential of the substance.
Presently, it is generally known within scientific commu-

nity that bioactive plant-derived compounds are best ac-
quired through whole-food consumption, not from
expensive dietary supplements. Phytochemicals are a
low-dose component of whole plant-derived foods and are
considered to be relatively non-toxic with generally posi-
tive safety profile. However, until now only a few
plant-derived compounds have been scientifically proven
to be safe and effective. Here, it is important to mention
that phytochemicals could still display cytotoxic effects.
These cytotoxic effects of phytochemicals can be due to
inappropriately high-dose, unsuitable combination of
drugs, or improper use. Moreover, according to the con-
clusions of several preclinical and clinical studies, certain
phytochemicals can act as potential carcinogens or tumor
promoters. For instance, beta-carotene was associated
with an increased risk of lung cancer in some cancer pre-
vention studies [183–185]. Aristolochic acids increased
risk of urinary tract cancer in humans [186]. Capsaicin
showed co-carcinogenic effect on TPA-promoted skin car-
cinogenesis in vivo [187]. Pyrrolizidine alkaloids from
comfrey promoted liver carcinogenesis in rats [188]. In re-
cent study of Johnson et al. [189], isoflavone daidzein
stimulated cell proliferation of estrogen receptor positive
breast cancer cells. In other study, phytoestrogens negated
the effectiveness of aromatase inhibitors in estrogen-
dependent breast cancer cell lines [190, 191]. In this re-
spect, it is also necessary to be very careful in patients
with hormonal or target therapy due to the possible nega-
tive interference of phytochemicals with the conventional
anticancer drugs [20, 192].
Phytochemicals have great potential to improve the

lives of oncological patients. Several phytochemicals are
able to synergize with chemo- and radiotherapy.
Therefore, their appropriate application either in the
chemoprevention or potentially treatment of breast can-
cer would represent an attractive approach to comple-
ment conventional therapies. This appropriate
combination of therapeutics could potentially lead to
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reduction in side effects without modifying or even in-
creasing the therapeutic effects. For ER-positive breast tu-
mors, one of the most used conventional therapies is
selective estrogen receptor modulators such as tamoxifen
and raloxifen. While these drugs are efficient for
ER-positive tumors, they are not useful for ER-negative
tumor subtypes. In this sense, bioactive plant-derived
compounds with ability to modulate the genetic expres-
sion of tumors that are not hormone driven, could be use-
ful [193]. Several studies have dealt with the idea of
reinstating the sensitivity of ER-negative tumors by phyto-
chemicals, and thus, these tumors could regain sensitivity
to SERMs and to other anticancer drugs [194–199].
Despite the fact that epidemiologic studies has not

provided sufficient evidence about anticancer activities
of various phytochemicals and/or whole plant-derived
foods, the results of our experimental work and other
preclinical studies accentuate our confidence in the im-
portance of regular daily consumption of whole foods
full of various bioactive compounds in order to prevent
or suppress the process of mammary carcinogenesis
[174, 200]. The main problem of clinical research seems
to be considerably weaker possibilities to control the
experiment in comparison with animal or in vitro
studies. Animal experiments are well controlled (strain,
age, induction of carcinogenesis, diet, circadian rhytms,
stressors, infections, etc.). On the other hand, in clinical
trials, it is very difficult to achieve uniform conditions.
From this reason, available epidemiological studies (in
many cases primarily not aimed on the evaluation of an-
ticancer effects of phytochemicals) do not validate the
results. In these studies, existing positive antineoplastic
effects of phytochemicals or whole plant foods could be
limited by several uncontrolled risk factors in women,
which are not present in laboratory conditions.
Therefore, only carefully designed and controlled clinical
trials can achieve significant anticancer effects of phyto-
chemicals (or their mixtures) in humans [179]. However,
it seems highly probable that phytochemicals/whole
plant foods containing a high antioxidant activity
(supposed genoprotective effects) may play a potentially
important role cancer chemoprevention, possibly via the
initiation phase of carcinogenesis.
Breast cancer research based mainly on epidemio-

logical studies on phytosubstance or plant-derived whole
food has not provided convincing anticancer effects. It
deals only with the effects of general eating habits, such
as Mediterranean diet, fruits, vegetable, olive oil, or fiber
intake on breast cancer incidence in evaluated cohorts.
On the other hand, there are well-defined animal onco-
logical studies presenting valid and significant results.
Based on preclinical data, it seems that preferring
plant-based functional foods instead of single phyto-
chemicals is a preferred approach in the cancer disease

management programs. However, preclinical evaluations
and well-defined and controlled clinical studies analyz-
ing the superiority of anticancer effectivity of one over
the other are needed to determine their potential use in
the clinical management of breast cancer [179].
Amongst the most relevant candidate plant-based whole
foods with significant anticancer activities in mammary
gland in vivo should be included: chlorella [13], dark
fruit peels [15], oregano [16], clove buds [17], thyme
(Kubatka et al., unpublished results), rosemary [201], soy
germ [202], blueberries [203, 204], blackberries [205],
pomegranate [206, 207], or caraway [208]. Regarding iso-
lated phytochemicals, only curcumin [209] and
epigallocatechin-3-gallate [210] showed significant anti-
cancer effects in animal models of breast carcinoma.
Carefully designed and mechanism-based preclinical

studies, especially animal studies, can provide the import-
ant information about the potential health benefits of bio-
active plant-derived substances [211, 212]. This approach
is necessary before the specific phytochemicals and plant
functional foods can be tested in human clinical trials.
Data gained from rodent breast cancer models (e.g., with
the using of herbs, spices, or dark fruit) could inspire
clinical breast cancer research. Important questions of the
clinical oncology include (a) type of effective phytochemi-
cals or plant whole food, (b) appropriate clinical setting ei-
ther in the chemoprevention or treatment of breast
cancer, (c) dosing, (d) finding of the appropriate combin-
ation of plant substances with standard chemotherapy,
and (e) target population. The big challenge for scientists
today remains to develop personalized supplements
composed from specific phytochemicals with proven anti-
cancer effects for each clinical situation, which can be
used in cancer prevention and/or therapy, either alone or
in combination with current chemotherapy [213]. This
will be possible in the case of better understanding the
mechanisms of action by which dietary phytochemicals
can affect human health.

Conclusions and expert recommendations
Though, so far clinical research has not sufficiently ex-
hibited any improvement in cancer outcomes by regular
consumption of phytochemicals, comprehensive preclin-
ical studies demonstrate significant antiinflammatory,
pro-apoptotic, antiproliferative, antimetastatic, antian-
giogenic, and cytotoxic for cancer stem cell effects of
phytochemicals in mammary carcinoma. Consequently,
well-designed clinical trials are needed to establish opti-
mal conditions and individualized treatment algorithms
for the cost-effective and readily applicable chemopre-
vention by dietary phytochemicals. In order to reach the
goal, multi-professional expertise is essential to explore,
create, and implement a comprehensive approach based
on the multiomic diagnostics [214, 215], individualized
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patient profiling [216, 217], patient stratification by
phenotyping and genotyping [218, 219], disease
modelling, and machine learning [220] as well as innova-
tive screening programs linked to the targeted preventive
measures [221, 222]. Current article conforms to the
principles of predictive, preventive, and personalized
medicine as the medicine of the future [223].
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